- Use terms of the continued fraction expansion of to find a solution to Pell’s equation .
- Calculate the Bernoulli number .
- Check that the Bernoulli number formula for gives the usual formula .
- Use the functional equation for the Riemann zeta function to calculate .
- If P1 and P2 are disjoint sets of primes and if both have a well-defined Dirichlet density, then show that densities satisfy d(P1+P2) = d(P1)+d(P2).
- If P is a finite set of primes, show that it has Dirichlet density 0.

Advertisements
(function(g){if("undefined"!=typeof g.__ATA){g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});}})(window);
var o = document.getElementById('crt-1640566572');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1640566572",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1640566572'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}