- Count the number of solutions to the equation in two-dimensional projective space working in the field with p elements, assuming p>3. Use the procedure described in class to convert to a homogeneous polynomial to find the solutions at infinity.
- problem 10.2 of MNT
- problem 10.3 of MNT
- problem 10.7 of MNT
- compute the trace of every element of the field , where .

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({collapseEmpty:'after', sectionId:26942, width:300, height:250});
g.__ATA.initAd({collapseEmpty:'after', sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-805071294');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-805071294",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-805071294'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}