- Problem 1, page 26 (add details to the brief sketch of this that was made in class).
- Problem 9, page 27.
- Problem 17, page 27.
- Problem 20, page 27.
- Problem 25, page 27. (You will receive full credit for showing the formal identity when s=2. By “formal identity” it means that you do not need to prove convergence. Hint: look at the first few lines of the proof of Theorem 3, which does the case s=1 (which was also covered in class on Sep7 ). Adapt the argument to s=2. When s=2 the series is 1 + 1/2^2 + 1/3^2 + 1/4^2 + … Can you find a way to “factor” this using prime factorization in the same way we factored 1 + 1/2 + 1/3 + 1/4 + … in class on Wednesday?

Advertisements
(function(g){if("undefined"!=typeof g.__ATA){g.__ATA.initAd({sectionId:26942, width:300, height:250});
g.__ATA.initAd({sectionId:114160, width:300, height:250});}})(window);
var o = document.getElementById('crt-1507164265');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1507164265",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1507164265'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}